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Abstract

We employ self-consistent mean-field (SCMF) theory in studying the body-centered cubic (bcc) spheres of block copolymers in the
presence of a neutral solvent. First we examine the accuracy of the dilution approximation then analyze the dependence of the bce structural
sizes with copolymer volume fraction ¢, the interaction parameter x g, and degree of copolymerization N. Our results reveal that both
distribution of each component and the micro-structural length scales are greatly influenced by each parameter ¢, xag, and N. As expected,
with decreasing ¢, more solvent distributes non-uniformally in the segregated domains, therefore deviation from the dilution approximation
increases. This also suggests that when the effective segregation parameter ¢y AgN is fixed, a larger deviation is expected as x gV increases
(i.e. ¢ decreases). Although when both xAgN and ¢ are fixed, decreasing N (i.e. increasing xap) enlarges the deviation from the dilution
approximation. Furthermore, this solvent non-uniformity behavior is so significant that it even affects the dependence of the domain spacing
L" and the matrix length A" with respect to (X ap)estlV =@ x ap/N near the ODT. When the systems are in molten state and/or in the concentrated
regime, both L and A" exhibit a sharp increase behavior as ODT is approached, due to many of the minority blocks being pulled from the
spherical domains and swelling the matrix. With increasing solvent amount and/or y sgN, we observe that the increase of the degree for the
minority blocks pulled from the spheres into the matrix near the ODT is not as significant as that in the melt. As such, the sharp increase

behavior in L" as well as A" near the ODT smoothens and even disappears.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Block copolymers continue to be an attractive area of
research due to their numerous potential applications with
characteristic domain dimensions in the range of 1-100 nm
by self-organization [1-3]. One of the major methods in
controlling the length scale of microstructures is by diluting
a block copolymer with solvent. Adding solvent S into an A/
B diblock copolymer, both the phase behavior and the
micro-domain length control become more complicated as
they involve the effects of copolymer composition f, degree
of copolymerization N, copolymer volume fraction ¢, and
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three independent interaction parameters, xam, Xas, and
XBS-

In the neutral (i.e. xas = XBs), there has been a great deal
of theoretical [4-13] and experimental [14-25] studies on
the resulting equilibrium phase behavior and the scaling
behavior of micro-domain spacing. Provided the concen-
trated regime and the solvent quality are good, the solvent is
distributed almost uniformly between the segregated micro-
domains. Consequently, the solution behaves as a neat
copolymer with the effective A/B interaction parameter
(xaB)efr simply given as ¢xap, which is named ‘dilution
approximation’ [4]. Previous self-consistent mean-field
(SCMF) calculations have shown that the equilibrium
solution phase maps are almost identical to the melt phase
map by replacing xagN with ¢xasN [5,8,9,11]. To explain
further, the order-order transitions (OOTs) and order-
disorder transition (ODT) for concentrated solutions follow
(¢xaBN)opt.00Tr=F(f), as given in the melts. In the semi-
dilute regime due to the chain swelling effects, both Olvera


http://www.elsevier.com/locate/polymer

Y. Chang et al. / Polymer 46 (2005) 3942-3951 3943

de la Cruz [7] and Fredrickson and Leibler [6] predicted
(" xasN)opr=F(f). Although experiments have shown
that the dilution approximation fails to describe the ODT
even for concentrated block copolymer solutions due to the
fluctuation effects [17,23-25], it is still successful in
predicting the OOTs [23-25] and micro-domain spacings
[14,15,23-25].

Whitmore and Noolandi [8] examined the lamellar
structure for copolymers in the presence of a neutral good
solvent by SCMF theory. They found that with a small
amount of solvent accumulation at the interface the
dependence of the lamellar domain spacing L with yag,
N, and ¢ is still approximated by

L~ (xap)’Ni¢" (D

with p=0.33, ¢=0.8, and r=0.4 being in the weak
segregation regime, and p=0.2, ¢=0.67, and r=0.22 in
the strong segregation regime. Furthermore, Vavasour and
Whitmore [10] showed that the micro-domain spacing for
lamellar, cylindrical, and spherical structures obeys the
dilution approximation, i.e. the spacing L", which is in terms
of the mean-squared end-to-end distance (v/Nb), scales
approximately as

L™~ (¢pxaN)" 2

with « equal to 0.2 in the strong segregation regime.
This is independent of morphology, and increases to a
value equal to 0.5 for lamellar phase and 0.4 for
cylindrical phase as the ODT is approached. « for the
spherical phase is close to 0.2 in the whole segregation
regime. These domain spacing scaling predictions have
been observed in agreement with experiments [14,15,
23-25]. For example, Lodge et al. examined a series of
poly (styrene-block-isoprene) diblock copolymers in the
presence of a neutral solvent dioctyl phthalate [23-25].
They found that the characteristic domain spacing scales
as ¢*% and x®?°, which is independent of morphology.
Hashimoto et al. reported the lamellar spacing as
L~(¢XAB)”3 [14,15]. However, with the effects of
solvent accumulation at the interface, the question still
remains of just how good the dilution approximation is
by varying xag, N, and ¢. Also the detailed analysis for
the length scales of each segregated domain, such as the
A-rich and B-rich phases, as well as the interfacial
width as a function of yap, N, and ¢ remains
unexplored. Although Naughton and Matsen [13] have
employed SCMF theory to examine the accuracy of the
dilution approximation as a function of solvent quality,
size, and selectivity, they did not analyze the solvent
effects on the behavior for each segregated domain
spacing.

In this paper we address the issue on the body-centered
cubic (bec) spheres of block copolymers in a neutral good
solvent using SCMF theory. First, we examine the effects of
XaBs N, and ¢ on the resulting volume fraction profiles of

each component. We then analyze how the distribution of
each component affects the related micro-structural domain
length scales, such as the domain lattice spacing L”, the
spherical diameter D*, the interfacial width w*, and the
matrix length A" (=L —D"—w"). It is worth noting that as
the ODT is approached, both L" and A" for the solutions in
the bcc phase exhibit a unique behavior, which has not been
observed elsewhere.

2. Theory

We employ self-consistent mean-field (SCMF) theory to
analyze the structural length scales in the ordered body-
centered cubic (bec) spheres of block copolymer solutions,
by using a previously established formalism [11]. As the
block copolymer morphologies are periodic, it is most
efficient to perform the SCMF -calculations using the
Fourier-space algorithm. That is, any given function, g(r)
is expressed in terms of the corresponding amplitudes, g;,
with respect to a series of orthonormal basis function fi(r),
g(r)= Ej gfj(r). The basis functions reflect the symmetry
of the ordered phase being considered, and are selected to be
eigenfunctions of the Laplacian operator

V2 f(r) = —AL7f(r) 3)

where L is the lattice spacing for the ordered phase. The
basis functions are ordered starting with f;(r) =1 such that 4;
is an increasing series. For both bcc and fcc phases
fi(r) = Cj cos(2mthx/L)cos(2mky/L)cos(2Tiz/L), where x, y,
z are the coordinates and £, k, [ are all integers. In particular,
for bee spheres 4+ k+ [ has to be even, and £, k, and [ are all
even or odd for fcc. The coefficients C; are determined by
satisfying 1/L[f?(r)dr = 1.

We consider a monodisperse AB diblock copolymer
in the presence of a solvent with average volume
fractions ¢ and 1—¢, respectively, The degree of
copolymerization is N and A-monomer fraction in the
copolymer is f. We assume that the system is
incompressible both locally and globally, and each
monomer type has the same statistical segment length b.
The local interaction between each pair of monomers I
and J, is quantified by the Flory—Huggins interaction
parameter xp. Each copolymer chain is parameterized
by a variable s that increases continuously from 0 to 1
along its length. We assume that the A-block starts
from s=0 and terminates at s=f which is the A-B
junction point. In order to determine the concentration
profiles as well as the free energy in the equilibrium
state, it is necessary to solve two end-segment
copolymer distribution functions, gc(r,s) and q’é(r,s).
These are found by integrating all possible configur-
ations subject to the fields wa(r) and wg(r) for chain
segments running from s=0 to f and from s=f to 1,
respectively, and the solvent distribution function gs(7,s)
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subject to the field wg(r). The distribution function
qc(r,s) satisfies the modified diffusion equation,

1 .
aqc g b2V2qC — Wa{c if s <f 4
- = 4)

1
ds ngszqC —wpge if s>f

and the initial condition is, gc(r,0)=1. The equation for
g&(r,s) is similar except that the right-hand side of Eq.
(4) is multiplied by —1, and the initial condition is
g&(r,1)=1. Since there is no chain connectivity in the
solvent distribution function gs(r,s) becomes

9qs

0 wsds (5)

When the amplitudes corresponding to the basis
functions are utilized, the modified diffusion Eqgs. (4)
and (5) in terms of gc (), qJCr’i(s), and gs (s), become

> = A l:192937"' (6)
ds ZjBiquJ if s>f
dqs.i _ -
a—s_zj:ciqu‘j i=1,2,3,... @)

The equation for qJCr’i is similar except that the right-
hand side of Eq. (6) is multiplied by —1. The initial
conditions are gc(s=0)=0;1, ¢&;(s=1)=26;, and
gs,{(s=0)=90;;. The matrices A;, B;, and C; are given

ij» Dij»
by
_NK
Aij = _@Alélj - ;Q}Aqkrijk
Bij = 6L2 z lj Zkart/k (8)

Cj=— E ws i I'jjx
%

T =V FOFfi(dr. wag wp g and wsy are the
corresponding amplitudes with respect to the kth basis
function for fields wa, wg, and ws, respectively. Based
on the minimization of free energy to attain thermo-
dynamic equilibrium for a periodic ordered phase, the
amplitudes of the fields have to satisfy

wa;i — Ws; = XaBN®p; T XasNes; — XasNda
— XBsNép,i
wp; — ws; = XaBN®a; + XBsN¢s; — XasNda
— XpsNop,i )]

Ga; + P+ Psi =0,

where the amplitudes of the concentrations of A, B and
S, respectively, ¢, ¢p;, and ¢g; are expressed in
terms of the distribution functions

Ai T

Z Fl_]k J dqu,/(s)qC k(s)

qc, 1(1)
b qu(l) Z U"J dsqe,(8)gC.(s) (10)
$si = gs.i(1/N)

Once the above amplitudes are determined and the
self-consistent equations for the fields are satisfied, the
free energy per molecule F' is given by

F geaM| gc.1(1/N)
kT ¢1[ s } ( ‘”Nln{ 1—¢}

- Z(wA,i¢A,i + wpiPp; + 0sis,)

+ ) (xaABN@abb.: + XasN@a.its.

+ xsNog,ids,i) (11)

which is reduced to the Flory—Huggins mean-field free
energy functional in the disordered state. For a periodic
ordered phase, the free energy has to be minimized with
respect to the lattice spacing L. As our major study is to
examine the structural length scales in the bcc array, we
choose the particular parameters in that bee is the most
stable phase. Once the lattice spacing L is obtained, we
determine the spherical diameter D, the interfacial width
w, and the matrix length 4 as follows. For example,
when a neutral solvent (xas=xgss=0.4) is added into a
block copolymer with f=0.16, N=300, ¢=0.8, and
xaN=41.4, the ordered bcc array of A-rich spheres
(SBCC) is the most stable phase. Fig. 1(a) and (b)
display the corresponding contour plots of A volume
fraction profiles at X-Y plane in the z-axis of z/L=0
and z/L=0.5, respectively. As can be clearly seen, the
A-block forms spheres in the bcc array. Fig. 1(c) shows
the typical volume fraction profiles ¢, ¢g and ¢g at y/
L=z/L=0.5, from which the inflection points with
respect to ¢a, ¢p and ¢g; i.e. d>¢/dx*=0 (I=A, B, S)
are determined. Note that these inflection points are
identical. As such, both values of the spherical diameter
D and the interfacial width w are determined, as shown
in Fig. 1(c). The matrix domain length / is defined as
L—D—w.

Once the micro-domains are divided into distinct
spherical, interfacial, and matrix regimes, the volume
fractions of each component A, B and S, which are
partitioned into spheres, interface, and matrix, q’)(s) ¢(W),
and ¢§M), respectively, J=A, B, S, are calculated by the
following equations:
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Fig. 1. Contour plots of A volume fraction profiles at X—Y plane in the z-axis of
(a) ZZL=0 and (b) Z/L=0.5, respectively, and (c) volume fraction profiles of
da, dB, and ¢ at y/L=7/L=0.5 for block copolymer solutions in the Sﬁcc
phase with f=0.16, N=300, ¢ =0.8, xap=0.138, and xps=xps=04.
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where

Vs = 2(47t/3)(D/2)°

w2 ](5+5) ()]

and Vyy=L>—Vs— V. It is evident that the sum of ¢§S),
o™, and ¢™ is equal to the average volume fraction of
component J(¢;). Therefore, the relative volume fraction of
component J into each regime is equal to

(S) S)
o = S W W=
@ + ¢ + o) b
W) (W)
~(W) d’] ¢J
¢y = =1 J=A,B,S (13)
@+ + o)
M) M)
M) __ ] _ ¥

7= ==
ARV R

Note that in Section 3 we use the dimensionless length

parameters L*, D*, w" and A", which are in terms of the

mean-squared end-to-end distance of copolymer chains

(/Nb), i.e. L" = L/\/Nb and similar to D", w" and A".

3. Results and discussion

To study the effects of neutral solvent addition on bcc
spheres of block copolymers, we choose a model system
with f=0.16 and yas=xps=0.4, and vary the values of
XaBs IV, and ¢ ranging from

0.06 < xap < 0.45
150 < N < 1000

02<$<1.0

Typical phase maps in terms of x .gN and ¢ are shown in
Fig. 2, where N is equal to 150. In order to examine the
possibility of dilution approximation holding for both order-
order and order-disorder transitions, we also plot the
calculated transition values directly from the dilution
approximation as the dotted curves in Fig. 2. Similar to
melts [26], the trends in phase transitions from hexagonally
close-packed cylinders of A (Ca)—bcc spheres of A
(SECC)—’fCC spheres of A (Sicc)ﬁdisordered phase (D)
with decreasing xapN are preserved. It is clear that the
boundaries between S5°“/D and SBCC/SECC deviate more
from the dilution approximation with ¢ decreasing. We also
observe that this deviation degree decreases with N
increasing. These results concur with those of Whitmore
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Fig. 2. Phase diagram for a diblock copolymer with f=0.16 and N=150 in
a neutral solvent (yas= xps =0.4) as a function of ¢ and xogN. The dotted
curves correspond to the transition curves simply from the dilution
approximation.

and Vavasour [9]. It should be noted that although SCMF
theory predicts a very narrow window of S5°C phase near
the ODT, the most probable order for the minority A spheres
is bcc. In addition, there exists to our knowledge, no
experimental evidence for fcc spheres in the neutral solvent
case. Therefore, we then focus on the analysis of the micro-
structural lengths for S5°C phase. In particular, the effective
segregation regime for our model system with f=0.16 is
27.6 < (XaB)ettN = ¢pxaN<41.4 in order to assure that bcc
is the stable phase. Note that the number of basis functions
in our computations is 60, since the free energy per
molecule F in Eq. (11) obtained for 60 basis functions
already reaches the equilibrium value. For example, Fig. 3
plots F versus number of basis functions for a copolymer
with f=0.16 in a neutral solvent with y 5= xgs=0.4 when
¢xasN=40 (¢ =0.2963, xap =0.45 and N=300).

We examine the effects of ¢, xap, and N on the
distribution of each component when a neutral solvent is
added. Fig. 4 demonstrates the deviation of volume fraction
profiles (¢(x) — ¢;) of component A, B, and S at y/L=z/L=
0.5 for a series of ¢ at xagN=41.4 (xag=0.138 and N=
300). As expected, the addition of more neutral and good
solvents into block copolymers reduces the segregation
between A and B, resulting in the A and B profiles become
more cosine-like. Though the solvent is neutral, it
distributes non-uniformally through the segregated
domains. In addition to the solvent accumulation behavior
at the interfaces, we also observe that the solvent distributes
more in the A-rich (minority component-rich) domains than
in the B-rich (majority-rich) domains. With decreasing ¢ the
solvent profile deviates more from the average solvent

-48.1118
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F
k_T—48.I 122

B

-48.1124 |-

-48.1126 ; L L L
20 40 60 80 100 120

Number of basis functions, 1

Fig. 3. Free energy per molecule F in Eq. (11) as a function of number of the
basis functions for a copolymer with f=0.16 in a neutral solvent with
Xas =xBs =0.4 when ¢xAgN=40 (¢=0.2963, x g =0.45 and N=300).

volume fraction (1 —¢). In Fig. 5 we also plot the deviation
profiles for a series of ¢ but x /N increases to 135 (xap=
0.45 and N=300). By comparing the solvent deviation
profiles at the same value of the effective ¢xap/N but
different xog/NV values in Figs. 4 and 5, we find that even
when the effective AB interaction parameter ¢xagN is
fixed, the solvent non-uniformity behavior becomes more
significant with increasing xagN (i.e. decreasing ¢).
Furthermore, even though both xAgN and ¢ are fixed, the
distribution of each component is influenced by degree of
copolymerization N. This is shown in Fig. 6 where we plot
the deviation profiles of each component for a series of N
values when xapN=135 and ¢=0.21. In particular, as N
decreases, the non-uniformity degree of solvent distribution
through the domains increases.

Varying each parameter ¢, yap, and N hold great
influence not only on the distribution of each component but
also on the micro-structural length scales. Fig. 7(a)—(d)
shows the variation in domain spacing L, spherical
diameter D", interfacial width w" and matrix length /1*(=
L' —D" —w") with changes in ¢y o for a series of ¢, xaB,
and N values. In Fig. 7 we also present the results for
copolymer melts (shown as the solid curve a) as a
comparison. At a fixed value of y,gN equal to 41.4, when
the volume fraction of the added solvent (1 — ¢) is less than
0.34 so that the solutions are in the same effective
segregation regime as the melts, i.e. 27.6 <(xaR)eiN=
¢xapN <41.4, the micro-structural length results (shown as
the dotted curves b—d) are almost independent of N and the
same as those predicted by the dilution approximation, i.e.
simply from the melts with (xaB)er=®XaB. AS XaBN
increases to 135, the length results (shown as the dashed
curves f—i) for the solutions in the same segregation regime
(i.e. 1 —¢ between 0.693 and 0.797) are deviated from the
dilution approximation results and strongly dependent on N.
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Fig. 4. Deviation of volume fraction profiles (¢;(x) — ¢;) for component [ =
(a) A, (b) B, and (c) S at y/L=2z/L=0.5 of a copolymer solution with f=
0.16, xap=xBs=0.4, and xa,gN=41.4 (xag=0.138 and N=300) at a
series of ¢.

In particular, the length parameters L, D', A" are
significantly smaller than those predicted by the dilution
approximation while the interfacial width w" is larger. The
deviation from the copolymer melts increases with decreas-
ing N (i.e. increasing xag). We list some typical deviation
values for the length parameters L', D", w" and A" with
respect to those obtained from the melts in Table 1. For
example, when xagN is 41.4, the deviations are small to
within 4%. As y agNN increases to 135, though the deviations
for L and D" are within 5%, the deviations for w" and A"
rise significantly up to 9 and 18%, respectively, when N is
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Fig. 5. Deviation of volume fraction profiles (¢;(x) — ¢;) for component I=
(a) A, (b) B, and (c) S at y/L=2z/L=0.5 of a copolymer solution with f=
0.16, xas=xBs =0.4, and xaAgN=135 (xaAp=0.45 and N=300) at a series
of ¢.

300. Fig. 7 also presents the variation of the length results
with xap for ¢=0.7 and N=150 (shown as curve e), and
¢=0.3 and N=150 (curve j), respectively. It is clear that
the deviation increases with decreasing ¢ (i.e. increasing the
amount of solvent).

In general, the degree of solvent non-uniformity
correlates well with the deviation of structural lengths
from the dilution approximation. Furthermore, it is worth
noting that this solvent non-uniformity phenomenon has a
great influence on the A" including L” behavior near the
ODT, such that the dependence of L" and A" with respect to
(xaB)eiN=¢x aBN is different from that in melts and varies
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with ¢, xag, and N. If we were to express this difference as a
power law over the short range of ¢y ogN near the ODT, we
would find that L*~ (¢xasN)* with the power « varying
from —0.45 to —0.05 and A" ~ (¢xapN)® with 8 from —
1.98 to —0.5 dependent of ¢, xag, and N. In order to explain
this striking behavior, we plot &}S), (f)ﬁw), and q~S§M) (J=A,B,
S), which correspond to the volume fraction of component J
into spheres, interface, and matrix, respectively, for melts
and solutions as a function of ¢px sgN at a series of x5 and
N in Fig. 8. Recall that for block copolymers in the melt as
Xxap decreases because the segregation degree between A
and B becomes smaller, the interfacial width w" increases

and both D" and A" which are characteristic of A-rich and
B-rich domains respectively decrease, as expected. As a
result L* decreases with decreasing xapN and scales as
(xagN)***. However, as xapN decreases further and
approaches the ODT value, both A" and L" increase
significantly. This is mainly attributed to the fact that
many of the minority A blocks are pulled from the spherical
domains and swell the matrix, as can be clearly seen in Fig.
8. For a melt with y o/ decreasing from 40 to 28 near the
ODT, we find that the fraction of A in the interfaces (}SQV)
decreases slightly from 0.5 to 0.42, and thus a significant
increase of A fraction into the matrix bei“) from 0.2t0 0.52 is
mainly attributed to the fraction of A inside the spherical
domains q?ﬁf) pulled from 0.3 to 0.06. For component B,
though both NS) and q3§3w) exhibit an increasing and then
decreasing behavior, and (1~§§3M) an opposite behavior with
decreasing x g/, there is not much variation of B fraction
in each domain. Thus the sharp increase behavior of L" and
A" near the ODT is consistent with the significant increase
of minority A in the matrix domains pulled from the
spherical domains. With the addition of a neutral solvent,
provided that the solvent amount is not large (for example,
(1 —¢) is less than 0.34 when x,gN=41.4), the factions of
A and B components into each regime are the same as those
for melts, and the solvent fractions into each regime behave
similar to the A fractions. Therefore, the dependence of L*,
D*, A*, and w" with ¢ near the ODT behaves much the same
as that with respect to x sg/N for a melt. As the added solvent
amount and/or x,gN continues increasing (for example,
when xagN=138 such that 1—¢ is around 0.71-0.80), we
find that the fractions of each component into spheres are
almost the same, but those into interfaces increase and those
into matrix regimes decrease with the values for melts and
for concentrated solutions. As such, the increase of the
degree for the minority blocks pulled from the spheres into
the matrix near the ODT is not as significant as that in the
melt. The sharp increase behavior in L as well as A" near
the ODT gets smoothened and even disappears.

It should be noted that all of the above results are based
on the self-consistent mean-field theory. It is well known
that near the ODT in the semidilute regime the effects of
chain swelling as well as the fluctuations have to be
considered. If so, these effects may influence the domain
size in two opposite ways. On the one hand, the swelling
chains will lead to larger domain spacing, as one may
naively expect. On the other hand, if the neutral solvent
accumulates at the A/B interfaces, the area per chain
increases which thus leads to a decrease of the domain
spacing. We believe that this solvent accumulation behavior
becomes more significant with the fluctuation effects
considered. Therefore, it is reasonable to expect that the
domain spacing becomes smaller than the mean-field
prediction. As such, the deviation from the dilution
approximation becomes larger and our results near the
ODT become more significant.
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Fig. 7. Double-logarithmic plot of (a) lattice spacing L, (b) spherical diameter D", (¢) interfacial width w", and (d) matrix domain length A" versus ¢xapN at
various values of xap and N for block copolymer solutions with f=0.16 and xas=xps=0.4 in the SRCC phase.

Table 1
Typical values of deviation for the length parameters L*, D", w" and A" compared with those obtained from the melts
xaBN XAB N $xaBN (%)
Lp=1)— D (p=1)— W —w =1 (A(p=1—
LY (@DIL (¢=1)) DD (p=1)  W(=1) A (G (= 1))
414 0.207 200 28 1.239 0.423 0.846 3.192
36 0.133 0.250 0.309 0.295
0.069 600 28 0.283 0.042 0.386 0.941
36 0.022 0.072 0.178 0.099
135 0.450 300 28 4.115 3.493 8.960 17.573
36 2.785 3.582 3.776 3.776
0.135 1000 28 2.179 0.042 3.691 7.648
36 1.015 1.296 1.128 1.961




3950 Y. Chang et al. / Polymer 46 (2005) 3942-3951
0.50 T T T T T 0.006 0.060 T T T
------ melt (N=300) -
040} 7, N=41.4 (N=300) | P T
<y N=138 (NS300) 1goesl ~ | ool e ]
030F T /o S ] e
5.0 e O s e
A // ¢B ' S
0.20F S , J
/ 0.002 ¢ 1 0.020 / 1
0.10F / ‘ 1 /
0.00 e 10,000 | 0.000 T
28 30 32 34 36 38 40 28 30 32 34 36 38 40 28 30 32 34 36 38 40
¢ZABN ¢ZABN ¢XABN
0.60 T T T T T 0.16 T T T T T 0.25 T T T T T
0.56
0.14 0.20+ 4
0s2r ] e
~( R B A e ~ (WY~ T
y B A VNS 7
A T B G ~y S
0.48 | T 1 “~
ol 0.12} \ 0.15} 1
/
044/ . .
()4() 1 L L L L 0.10 1 L L 1 L 010 L 1 1 L L
2 30 32 34 36 38 40 28 30 32 34 36 38 10 28 30 32 34 36 38
O, sl Zal
0.60 T T 0.90 T 0.85 T
0.88 e 0.80f
é (M-’\ 7 = (M) \\\
B N T ¢s T
0.86 - ) 1 075
010 1 L L 1 - L 0.84 1 L L L - L 0.70 L 1 L L
28 30 32 34N36 38 40 28 30 32 34N36 38 40 28 30 32 34N36 38 40
¢ZAB ¢ZAB ¢ZAB
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function of ¢x AN at various values of y g and N for block copolymer solutions with f=0.16 and x5s=xps=0.4 in the SECC phase.

4. Conclusions

In this paper we analyze the distribution behavior of each
component as well as the micro-structural length scales for
the body-centered cubic (bcc) spheres of A/B diblock
copolymers in a neutral solvent by self-consistent mean-
field (SCMF) theory calculations. In particular, the effects of
XaBs N, and ¢ are examined. Most previous theoretical
studies have shown that with the dilution of a neutral and
good solvent into block copolymers, the domain spacing L
is simply obtained as a neat copolymer with the effective
A/B interaction parameter (X ap)efr= P X AB> 1-€- L obeys the
so-called dilution approximation. While our SCMF results
for the beec phase find that the length parameters become
more complicated due to the effects of solvent non-
uniformity and are strongly dependent of each parameter
XaB>» N, and ¢. With increasing solvent amount (1—¢)
and/or x oM, the domain spacing L", the spherical diameter

D", and the matrix length A" are significantly smaller than
those predicted by the dilution approximation while the
interfacial width w" is larger. Although when x AN is fixed,
the deviation increases with decreasing N. In general, the
deviation of micro-structural lengths from the dilution
approximation correlates well with the degree of solvent
non-uniformity.

Furthermore, when ODT is approached, both the
dependence of L" and A" with respect to (XaB)efN=
¢xapN for the solutions exhibit a strikingly different
behavior with that for melts. Recall that for melts in the
bee spheres L™ and A~ both increase sharply as the ODT is
approached. This sharp increase of behavior near the ODT,
in particular for copolymers with a very short minority
block, is not surprising due to the fact that many of the
minority blocks are pulled from the spherical domains and
thus swell the matrix. With increasing solvent amount
and/or xapN, the fractions of each component into
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interfaces increase and those into matrix regimes decrease
with those values for melts as well as for concentrated
solutions. As such, the increase of the degree for the
minority blocks pulled from the spheres into the matrix near
the ODT is not as significant as that in the melt. The sharp
increase in the behavior of L as well as A" near the ODT
smoothens and even disappears. If we were to express this
difference as a power law over the short range of ¢y agN
near the ODT, we would find that L"(in terms of v/Nb) ~
(dxagN)" with the power « varying from —0.45 to —0.05
and A"~ (¢XABN)6 with 8 from —1.98 to —0.5 dependent
of ¢, xap, and N. It should be noted that this unique behavior
for L” and A" near the ODT in the bce phase due to the
effects of solvent addition has not been observed elsewhere.
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